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Hybridization theory between localized mode and free propagating modes for light scattering
from a dielectric sphere

Jun-ichi Inoué and Kazuo Ohtaka
Center for Frontier Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba, 263-8522 Japan
(Received 3 September 2004; revised manuscript received 14 February 2005; published 17 June 2005

Light scattering from a homogeneous dielectric sphere is discussed in terms of hybridization between a
localized mode excited inside the dielectric sphere and free propagating modes in vacuum. This theory is a
photonic counterpart of the Anderson model in electron systems, yielding a rigorous theoretical foundation of
the heavy photon concept, which was numerically proposed for almost flat photonic bands. The magnitude of
the hybridization is analytically expressed. The localized mode is identified with the photon virtual bound state.
In order to confirm the validity of the present theory, a comparison is made between the present theory and
conventional numerical calculation for results of the photonic density of states.
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I. INTRODUCTION other hand, in the higher energy region where diffraction
The study of light scattering from a particle or an en- channels open, there are almost flat photonic bands. The
X . heavy photon concept was proposed for the almost flat pho-
sem_ble of particles hag a long history over a Ce”fﬂﬂy. In _tonic bands of PCs made up of dielectric sph¢€ds In Ref.
particular, the scattering from a homogeneous dielectri¢g) it was numerically revealed that certain flat photonic
sphere is one of the central issues. The exact solution for the, 45 were characterized by a single eigenelectromagnetic
scattering amplitude was obtained by Mi], which was  mode of a single dielectric sphere. It was also reported that
represented in the form of an infinite series. Since the conthe width of such a photonic band agreed with the width of
vergence of the series is not fast, extensive efforts to approxthe photonic density of statéBDOS in light scattering from
mate Mie’s result both for analytic and for numerical calcu-a single dielectric sphere. Note that the PDOS characterizes
lations are made to obtain formulas suitable for practicathe increase of the photon density of states owing to the
uses, depending on the specific regions of the plane of rdntroduction of the dielectric sphere into vacuum space.
fractive index and size paramefdr,3-5. The outcome leads From these two findings, they proposed that such a flat pho-
to a basis for device development, such as a Igtalue  tonic band formation results from repetition of the following
microsphere resonat®6]. single event: once a freely propagating mode enters a dielec-
The study of light scattering from a homogeneous dielectric sphere by tunneling, it stays for a momgitcalized
tric sphere is directed not only to practical purposes but alseode, in a sengelt then escapes from the sphere and again
to fundamental issues even nowad@y$ The fact that the freely propagates.
extensive studies of fundamental issues have been kept This scenario immediately reminds us of the heavy fer-
shows that it is an inexhaustible spring. One example is thenion, which is one of the important problems in electron
complex angular momentum meth@8l. In the present pa- systemg13]. In a typical case of a heavy fermion, a local-
per, the subject is illuminated from another fundamentaizedd state in a magnetic impurity atom hybridizes with the
point of view, which is based on the heavy photon concept irfree s electrons in a host metal and obtains an itinerary to
photonic crystalgPCs9 [9]. construct an almost flat electronic band. The flatness is the
The heavy photon is an important concept to understandrigin of the “heavy” quality. The hybridization is related to
certain photonic bands. In a PC—defined as a system witthe finite lifetime of the localized state, which determines the
periodic structure of dielectrics or metdls0—12—the pho-  Lorentzian width of the density of states. The essential point
ton dispersion relation is modified to construct photonicis that a localized mode is embedded in free continuous
bands. The photonic bands result from the interplay betweemodes on the energy axis, which is described by the Fano
the scattering from the individual scatterer and the scatteringnodel[14]. Analogously, the heavy photon concept is based
whose origin is the periodicity. The heavy photon is associ-on the view that a certain localized mode excited in a dielec-
ated with the former aspect. Although details of the photonidric sphere is embedded in freely propagating modes and
band structures depend on both a lattice structure and refrabybridizes with the free modes. The heavy photon concept is
tive index, one can find typical features: the photonic bandshus a vectorial extension of the heavy fermion and a quite
that appear in a rather lower energy region are almost lineainteresting problem.
which can be understood from the empty lattice picture. The modes on these flat photonic bands are expected to
They are affected by the periodicity of the structure. On thehave several distinguished properties owing to the peculiar
mechanism of band formation. Indeed, interesting properties
of electromagnetic forces were reported for the photonic

*Present address: ICYS & Nanomaterials Lab., National Institute
for Materials Science, 1-1 Namiki, Tsukuba, 305-0044 Japan. The concept does not mean that the photon obtains mass.

1539-3755/2005/76)/06660712)/$23.00 066607-1 ©2005 The American Physical Society



J.-l. INOUE AND K. OHTAKA PHYSICAL REVIEW E 71, 066607(2005

bands characterized by the heavy photon, which is expectedodg, both of which are characterized I&/,(r) satisfying
to play an essential role for fabrication of PA%]. Further-  [16]

more, the flatness of the photonic bands means considerable

reduction of the light group velocity. It leads to the effective d> 10+1)
enhancement of the light-matter interaction. This enhance- a2~ r2
ment is expected to be important for device development.

In spite of the importance of the heavy photon concept forryo independent fundamental solutions Ryg(r) are known
both fundamental and application research, it is just an intuiyg pe the Riccati-Bessel function(x) = xj;(x) and y,(x) =
tive proposition based on numerical results with lack of a_xn(x), where j,(x) and n(x) are thelth order spherical

rigorous foundation. The purpose of this paper is 10 give g3ggge| and spherical Neumann functions, respectiily
rigorous foundation to the heavy photon concept. Since the | ot s introduce the radial functions

heavy photon concept is associated with the individual con-

stituent scatterers of the PC, as stated previously, it is essen- pA(F) (r <a)

tial to discuss the single sphere problem. In order to establish RN (X) = L'k ' (3

the heavy photon concept, the following points should be ’ a(r) (r>a),

discussed. The hybridization between a localized mode ex- o

cited inside a dielectric sphere and freely propagating mode¥nereA indicates the TEM wave or TM (N wave) mode.
should be verified and the localized mode identified. The TOM analyticity at the origin, the general solutions are writ-
magnitude of the hybridization should be clarified. For dem-t€n as

onstration of the validity of the present theory, the PDOS

+ K2+ U(r)}Rq,k(rFO- (2)

obtained from this theory should be compared with numeri- Pik(r) = Biyi(nk), (4)
cal results. All of these points are addressed in this study.
The organization of this paper is as follows. In Sec. Il, the qlxk(r) - B}Su[[ﬁf‘l/ﬂ(kr) + yi(kn)] (5)

hybridization between a localized mode and free propagation

modes is shown to be well defined by formulating the probyegpectively. The prefactorB), ., are not essential in the
lem of light scattering from a homogeneous dielectric sphen?OIIOWing discussion. The coefficiers is determined by the
into the Fano model. The analytic expressions of the magniboundary condition ;':\It:a as
tude of the hybridization are obtained. Section Il gives a

comparison of the PDOS given by the present theory with ,
numerical results in order to verify the present theory, where Br=- X'1(ka) — n“Dy(nka)x;(ka) ,
special attention is paid to the width of the PDOS. The lo- ¢'1(ka) = n“Dy(nka) (ka)
calized mode is identified. Finally, conclusions and future )
problems are given in Sec. IV. Derivations of several impor-where u=+1(-1) for A=TE (TM), respectively, and

tant equations and supporting materials are shown in thBi(nka) =y’ (nka)/ys(nka). It should be noted thag; is
Appendixes. represented by the phase shift of a partial wave with angular

momentum asB!'=cot 8 [17]. The boundary condition that

ar(R)=0 givesp!'=-xi(kR/ #i(kR). Then the allowed’s in

this geometry are determined. Remember that these results

A. Summary of conventional method for electromagnetic wave ~ do not depend on the confinement nature of the electromag-
in space including a dielectric sphere netic wave inside the dielectric sphere.

(6)

Il. THEORY

For later use, the results are summarized for the propaga-

tion of electromagnetic waves in the geometry that a dielec- B- Hybridization between a localized mode and free modes
tric sphere with constant refractive indexand radiusa ig This subsection, which is the main part of the present
located at the center of a vacuum sphere with ra®esa.”  \york, presents a hybridization theory between a localized
The condition that electromagngtlc wave should vamsh at thg,ode inside the dielectric sphere and free propagating modes
vacuum sphere boundary R is imposed. The equation that i, yacuum space. For the purpose, the task is to rewrite the
the transverse electric field obeys is results summarized in the previous subsection into the

V2E + K2E + U(r)E =0, (1) equivalent form to the one derived from the Fano model

[14]. After the foundation, the PDOS is analytically obtained.
wherek is the wave number of the electric field in vacuum. As for the localized state, the Mie resonant states are taken as
U(r) denotes the “effective potential” caused by the dielecthe candidates, since wave functions for the Mie resonant
tric sphere adJ=k?(n’-1)6(a-r), where 6(r) is the step states are known to be quite localized inside the dielectric
function. The two independent solutions are the vectoisphere[18]. It should be refined later if it is necessary.
spherical waves, th& wave (TE mode andN wave (TM
1. Wave function

%Since the procedure of this study is to express in terms of a phase In the first place, free modes in the vacuum spheité-
shift how much free modes are affected by a localized mode, it i©ut the dielectric sphere are analyzed. Consider a function
convenient to discretize the free modes. ¢ (r) that satisfies
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d® 1(1+1) 1
[@ - kz] A =0, (M MIRKO]=MIp(n]+
under the boundary condition thaf (r=R)=0 and the nor- 5 [P (@] d5a) - p (@) ¢ ()
malization condition that X -2 M s(r)]
R
f $Fundr=1. (®) 14
0 and
The boundgry_condltlon discretizes aIIowdx?!; as ks=(s N[RTQA(V)FN[IDW(U]
+1/2)7/R with integers, where the asymptotic form of the P -
Riccati-Bessel function is used. The radial function charac- w30 [Pk (@] ¢1s@) = pjy () B (@)
terizing free modes is then obtained as . K2 - K2
2 XN : 15
Balr) = \ﬁwksr). © [910) 15
respectively.
The main task for the present purpose is to exp;mcr) The addition ofpI I((r) toq (1) is expected to be valid for
in terms of¢h ((r)’s. This is mathematically equivalent to the suchk={Kk\k}<k<---)} that satisfies the resonant condi-

Fourier-Bessel expansion of\(r). Instead of directly per- tion g, }(k)=0, or the Mie resonance conditiof}=/2
forming the Fourier-Bessel expansion, we extend a convedmod =) [1]. This is because the most part of the amplitude
nient method proposed by Kondd9] for the Anderson of the Mie resonant state is known to be within the region
model in electron systemi3,20. For the expansion, the r<a[18]. In the following discussionp(r) is assumed to
following identity is used: be the Mie resonant state.

g (r>a),
0 (r<a),

2. Secular equation

[an(@]'Fi@ar) -ap k(a)—H Kar= {
The wave functions are represented in the form of hybrid-
(10) ization between the localized mode characterizeq)l’qyr)

whereF, (r,r') is defined as and freely propagating modes characterizeddpyr)’s in
' the previous subsection. It is, however, not sufficient for con-
Forr)=S #1(r') i s(r) (11) struction of the hybridization theory. Equivalence to the Fano
Hen K2 - k§ ' model should be shown. For the purpose, we derive an equa-

o o ) ) ~ tion equivalent to Eq(6) by using ¢, (r) instead of both
The proof of this identity is given in Appendix A. Insertion #i(kr) and y;(kr), which should have the equivalent form to

of the definition off,,(r,r’) yields forr>a the one derived from the Fano model. The equation obtained
N @)1 é (a) —a(a)d (a should determine the “eigenvaluelss.
qfk(r) => [a@)] ¢"S|i2) kf' (A )d>|,s(l’). (12 After some algebra, details of which are given in Appen-
s A dix B, Eq. (6) is rewritten as
Remember that the right hand side of this equation identi- n“kD.(nk a a2
cally vanishes for <a, as is desired. Making use of the E[ I a)f' {8) = ¢i(a)] =0. (16)
boundary conditions at=a that g (a)= (1/n)p|TE(a) and s k=G

[, (a)]’ (1/n [,\FA’ (a,)]’ for2 th$MTE mode, andq'(@ | ef ys expand_(k) =n*kD,(nka) aroundk=k" with appli-
=p/¥'(a) and [Q| ¢ (@)]'=(1/mA[p{K'(@)]' for the TM mode,  cation of the Wronski theorem, shown in Appendix C. Here
we replaced(a) and[q}\(@)]" in Eq. (12 with piy(a) and k! satisfies the resonant conditigh(k) =0, resulting in the

[P} (@], respectively. fact that the condition E(C8) is well satisfied. From Eq.
Here let us consider suqbrk(r)s that satisfy the condi- (C10), one has
tion that
a LNK) = LMY — b (K)* %)
f [ph(r)[2dr ! o Y (nk'a)
0
——=1. (13)  In the following, AL}=-n***[k?>-(k")?]/¢7(nK'a) is de-
f |ph(r)]2dr fined. Substituting Eq(17) for Eq. (B21) and omitting
' higher order terms tha®((AL)?), then
In this case, one can safely ag(r) to g\ (r) obtained [LMNKY PR (@) = 2LNKOFP k(a)+F (a)=—AL},
above to c:onstrud’R1 k(r) for 0<r <R, sincepy,(r) has neg- (18)

ligible amplitude outside the dielectric sphere Following the
standard procedur{dG] the spherical vector waves associ- where Eqs(B13) and (B16) are used. Using explicit forms
ated with theR\(r)’s are obtained as of Ff\,Fl. Frie andL} (), Eq. (16) is rewritten as
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calculation, consider the statfig} in the vicinity of suchk;‘O
thatky ~k?, then it is shown that];; does not depend os)

which is denoted bWﬁ in the following. The secular equa-
where tion is then simplified as

vhsi =K (nkha) ¢ o(a) - P2k ) ¢ @), E-E oS L 23
(20 Y E-E

E=k? E}=(K)? and E;=kl. Remember that the form of The prime shows that the summation with respecs tis
~1/(k?-K%) is associated with the photon Green’s functionrestricted in the vicinity okgo. The explicit form of the hy-

N2
e-g=3 sl (19

[21]° bridizationV}", for each mode is now expressed as
Equations(14), (15), and(19) show that the formulation ' 1

presented in this paper is equivalent to the Fano mdag| VTE = KTEu/ (NKTEQ) b () = = urn(NKTEa) &/ -(a 24

where a localized mode labeled withis embedded in con- =Tk ,(@) nlp'( Kra) i@, (29

tinuous free modefabeled withs), and that the two modes
are hybridized whose magnitude is denoted ty.. This 1 ,
equivalence is understood when one rememble%{il the follow- Vi = kiTMH%(nK'TMa)@,i(a) - h(nk™Ma) ¢/ (a), (25)
ing simple fact. Consider the Fano model Hamiltonfdg
respectively, where, j(a) is obtained by replacement kfin
He= 2 efs)(s| +6liXi| + 2 [Vds) il +Hc]. (21) ¢ (a) with k. The discretized state&s are represented as
s s E,=sAE with integers and level separatioAE=wk/R. The
Here |s) and |i) denote continuous modes and a localized €nergy” E to be determined is the one that is energetically
mode, respectively, anel, ;, andV; are the eigenenergy of shifted from ESO as a result of being influenced by the em-
|s), eigenenergy ofi), and magnitude of the hybridization of bedded localized mode. The shift is related to a phase shift.
both modes, respectively, is assumed to be real. In order One thus setsE in the denominator of Eq(23) as E
to solve the eigenvalue problefids| W)= W), consider an =AE(sp— 3/ m):
eigenfunction in the form of¥)=|i)+=cJs). The coeffi-

o= . 1
cient is then determmgd agz_vs/(e—es), and the secular E‘E?:[Vf‘,i]zz ! > . (26)
equation to determine is obtained as s AE(so— 8\/m) - SAE
[V]? Here one can allow removing the restriction of the summa-
€T (22 tion because the contribution fromstates far away frons,

s €76 is negligible. This approximation enables one to analytically

One can easily see that this eigenvalue equation has the saf@form the summation to yield

form as Eq.(19). It is then concluded that E§20) correctly VA ]2 cot 8
represents the magnitude of hybridization betweenithe E-E'=- —lis — 1 (27)
localized mode inside the dielectric sphere and the freely AE
propagating modes. The derivative ofs' with respect toE is known to give the
_ _ PDOS as a function dE, which is
3. Photonic density of states N
The PDOS is discussed in order to demonstrate the valid- @ = Ajj (28)

ity of the present formulation. The PDOS characterizes the dE  (E-EM2+[AN]
increase of the number of the states owing to introduction o - N 12/ A E?

the dielectric sphere into vacuum. In order to obtain thefrhe A= mVi;I"/ A are represented as
PDOS from the present hybridization theory, one needs to _ ¢ ,, & . 1 TE.\ 11 1 TE
perform the summation in EGL9). It is generally impossible 21 = 2ki | #/1(nk "a)¢s(k; "a) - Hl/ﬂ(mﬁ a)y' (ki ")
to analytically perform the summation with respectstbe- 29
cause of thes dependence of the numeratcﬁg’i. For analytic (29

2
l

- 1 2
™ — 5 TM ™ ™ ™ ™
3Use of k2 in this work is reasonable for the present purpose, inAii = 2K; {H%(nk" a) (ki "a) = ¢y(nk Ma) ¥ (k; a)] ,
contrast to use of the dimensionless size parametéa which is
generally used for the Mie scattering problem. The reason is as (30)
follows. The procedure for our purpose is to express how much fre . : ‘L
modes are affected by the induced localized mode, where the Ioca??SpeCtlvely' When using the explicit form of the resonant

ized mode plays a role of an impurity scatterer for free modes. It iscondItlons

then appropriate to express the influence for free modes from the o TE TE 1 TE\ ;) A TE _
localized mode by the Green’s function, as in the case of the Born ¥ 1(nk ") x (ki @) = ElM(nK a)x'i(kia)=0 (31
series. For time delay and dwell time problems, the us&?of

discussed i22]. for the TE mode and
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200 10
(a) | (b)
i :
150 :
%) : 6
o -l
Q100 : FIG. 1. PDOS with (\,l,i)
: 4 =(TE,5,i), wherei=1(a), 2 (b), 3
i (c), and 4(d). The refractive index
50 ‘ is set asn=3.0, and the radius of
: 2 the dielectric sphere is taken as
. the unit length. The solid lines
J . s represent analytic results of the
%3 7 7.2 74 76 Y12 N3 14 15 6 a7 s PDOS, the Lorentzian given by
k2 k2 Eq. (28), and the dotted lines rep-
25 0.8 resent the%EnumericaIIy. obtained
(©) (d) PDOS, dd=g nun{dE. It is clear
}\ that the first three peaks show
2 I good agreement. On the contrary,
" 0.6 the fourth peak shows less agree-
3 \ ment, although all these four
wn 1.5 peaks originate from Mie reso-
o : 04 nance. The unit of the horizontal
E B ) (vertica) axis is [length]=2*2,
1 3 e.g.,[mm]~2*2 whena=1 mm.
\ 0.2
0.5 2
JA
0 _ierecere™! L 0
20 22 24 26 28 30 30
k2
1. 1w ™ Mo ) TM index i_s set a$=3.0, anda is taken as the unit length. Th_e
oY i(nk Ma)xi(ki a) = ¢i(nk Ma)x"i(k @) =0 (32)  numerical results of the PDOS are obtained from the deriva-
tive of the numerically obtained phase sh#t,, with re-
for the TM mode, those results are simplified as spect toE=k? The phase shift},,,, of the partial wave of
- TE T2 the X mode withl is calculated by Eq(6). The derivative of
ATE = o TE i(nk ~a) (33  the phase shift gives peaks, each of which is numbered from
Li " ny(K ) i=1 in the manner thak'., <k'.,<---. Each peak of the
q PDOS is thus labeled by a set @f,l,i). The peaks are
an

referred to as numerically obtained PDOS in the following.
'¢|(nK-TMa)]2 Figures 1 and 2 are results of the comparison. Figures
| (34) 1(a)-1(d) show the first four peaks of the PDOS fram1
L xi(ka) throughi=4 for the TE mode witH=5. The solid line rep-
respectively. These are the formulas for the width of the’€Sents the Lorentzian obtained by the present theory, Eg.
PDOS. Note that there is i@ dependence of the width. The (28). and the dotted line represents the numerically obtained
fact that Eq.(28) is given by Lorentzian shows that the life- PDOS,d§ ,.{dE. One can see that the first three plots
time of the localized mode becomes finite as a result of hyShow good agreement between the present analytical and the
bridization with free modef22]. numerical results. In contrast, the fourth one has a large de-
viation in spite of the fact that the peak in Fig(dl also
originates from the Mie resonance as well as the other peaks
[1l. DISCUSSION showing good agreement. The comparison for TM modes is
shown in Figs. Pa)—2(c), where the first three peaks of the
PDOS fromi=1 throughi=3 for the mode withl=5 are
presented. The first two peaks show good agreement with
A comparison is made between the analytic result(2§.  numerical results ds\5 v,./dE. The third one, however,
and numerical results for the PDOS in order to check theshows disagreement, whose situation is similar to the case of
validity of the present theory. In the following, the refractive the TE mode.

AN = 2™

A. Comparison of PDOS between analytic
and numerical results
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140 35

(a) (b)
120 3
100 2.5

PDO

60 1.5
1 ‘ FIG. 2. PDOS with (\,l,i)
40 1 / =(TM,5,i), wherei=1 (a), 2 (b),

and 3(c). Parameters are the same
20 0.5 as the ones in Fig. 1. The solid
/ . lines represent analytic results of
0 0 —— the PDOS, the Lorentzian given
9 9.1 9.2 9.3 9.4 14 15 16 17 18 19 20 by Eq. (28), and the dotted lines
represent the numerically obtained
06 PDOS, d% ,/dE. It is clear
(©) that the first two peaks show good
0.5 I\ agreement. On the contrary, the
: ) third peak shows less agreement,
\". although all these three peaks
\. originate from Mie resonance. For

04

T
Ry
-’

the unit of the axes, see the cap-
. tion of Fig. 1.

PDOS

20 24 28 32 36

k2

For otherl’s, the similar behavior that the first few peaks which Eq.(28) shows less agreement with numerical results,
show good agreement is observed for both TE and TMand that the criterion depends dnCareful observation re-
modes. Let us focus on the full width of the half maximum veals that the conditiohn<ka<l1 is satisfied for the peaks
of the peaks(referred to as width, in the followingand  showing good agreement. The states that satisfy both the Mie
discuss it quantitatively. The width @I‘Bl“  dE (the dotted  resonant condition and this inequality are the photon virtual
lines in Figs. 1 and Ris denoted a®}, Dﬁ is evaluated by bound state$PVBS9 [23]. Peaks showing good agreement
the Lorentzian fitting by using the Ieast squares method. Invith numerical results are then concluded to originate from
order to measure the deviation between the Lorentzian widtRVBSs.
of the present theonjt); andD}}, the variance of the width is For completeness of the discussion, a brief summary of
introduced, defined as the PVBS is given. The details of the derivation are shown in

Ref.[23]. The PVBS is defined as the state that satisfies both
D|, Al _ (35)  the Mie resonant condition cat(k)=0 and the inequality
D I/'n<ka<| simultaneously. Under the inequality, the reso-
nant conditions are rewritten in the following form:

=T

Figures 3 and 4 show the},’s against the peak numbers
with I=1, 3, 5, and 7 for TE and TM modes, respectively. | [+1

Solid crosses are used for the peaks showing good agree- nka—Eﬂ- N7+ Ka (36)
ment, and the dotted crosses are for ones with less agree- n

ment. Note that Figs.(8) and 4c) correspond to Figs. 1 and {or the TE mode and

2, respectively. It is easy to see that the present theory shows

good agreement with numerical results for the first several I nka

peaks, but not all. Remember that all peaks, whether show- nka- 5T= N = 2+ 1) (37)

ing good or less good agreement, satisfy the Mie resonant

condition B(k")=cotd}=0, which are expected to have for the TM mode with integeN. The meaning of “virtual” is
commonly quite localized nature inside a dielectric sphere. Ithe following: consider a gedanken case where an infinite
is obvious that there is a criterion on tEe-k? axis, beyond barrier is located at the boundary of the dielectric sphere with
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1 1 1 , 1

(a) (b) ' @ | (b)
© ' ¥
0 e —-x 0 x— ------ x 0 0 x
o -1 1 b -1 1
2 2 -2 2
3 s ;
0 3 4 5 3 R S —1 30 s S e S 2 3 4 5
1 1 T 1 1 T
(© (@ | () o (d | oo
X > * 3
ob o Xgp 0L B R Y - S ol . %%
=] 1 :: 1 b -1 1
[
2 2 2 2
S 3 4 5 0 1 2z 3 4 5 35 =5 S0 1 3 5 4 5
peak number peak number peak number peak number

FIG. 3. Comparison of the width of the PDOS for the TE mode  FIG. 4. Comparison of the width of the PDOS for the TM mode
between the analytic result E(83) and the numerically obtained between the analytic result E¢34) and numerically obtained re-
results. The crosses shaxj;- plotted against the peak numbidor  sults. The crosses show/}" plotted against the peak numbiefor
I=1, 3, 5, and 7 ina), (b), (c), and(d), respectively. Solid crosses |=1, 3, 5, and 7 ina), (b), (c), and(d), respectively. Solid crosses
are used for peaks showing good agreement and dotted crosses fge used for peaks showing good agreement and dotted crosses for
peaks showing less agreement. Solid circles shpfwfor compari-  peaks showing less agreement. Solid circles sifWfor compari-

son between the present theory and the previously reported resulison between the present theory and the previously reported results.
Solid circle fori=2 in (a) is out of range; it is evaluated as

~TE —_
Tj=1j=2= ~4.56. ized nature of the non-PVBS is quite poor. The hybridization

theory is then not well defined for non-PVBSs.

radiusa. In this case, the electromagnetic wave is completely |t is not essential that only the cases with okl are
bounded inSide the dielectl’ic Sphel’e. The Condition Whicrpresented here. The reason is that under the present param_
determines the wave number is eter conditions the numbers of peaks showing good agree-
ment forl =2l,—1 and 2, are found to be the same. Note that
the smallest angular momentum for the spherical vector
wave isly=1. The hybridization theory does not depend on
whetherl is odd or even.

In Figs. 3 and 4, only one peak showing disagreement
dotted crosseds presented for eadhand there are no plots

I
nka—zﬂ-: N7r. (38)

This equation, the completely bound condition, should be(
compared with Eq436) and(37). Both of the two equations hf[or further non-PVBSs. This is because there is no sense

have small correction terms, the second terms in the rig after breaking the basic assumption for the hybridization
hand sides, comparing with E¢38). Since the gedanken theory that the localized states should be localized.

case will not occur for dielectrics, PVBSs are the most In summarv. the hvbridization theorv between the local-
bounded states for actual electromagnetic wave for a dielec- Y, y Y

tric sphere. Note that the conditiddin<ka<I| was pre- ized state and ffe?'y prgpagating mOdeS fgr light scattering
sentedschematicallyin Ref.[8]. For later convenience, the problem from a dielectric sphere is established for PVBSs

state that satisfies the Mie resonant condition but does né”}nd the localized mode is identified with a PVBS.

satisfy the inequality/n<ka<| is referred to as non-PVBS _ o

in the following. B. The relation to the result from the Breit-Wigner formula
Figures 3 and 4 show that the hybridization theory is valid One might think that the disagreement of the PDOS for

for PVBSs but not for non-PVBSs. The reason of disagreenon-PVBSs is caused by a lack of validity of the approxima-

ment for non-PVBSs is that the assumption EB) breaks. tion for the summation in Eq26) used to have the analytic

The non-PVBSs are not influenced by the “confinement poresult of the PDOS, although the reason for the disagreement

tential well” I(1+1)/r?~U(r) as PVBSs ar¢23]. The local- s discussed in the previous subsection. In order to reconfirm

ized nature is thus poor. In addition, it is confirmed that theit, we refer to the previously reported results of the width

numerically obtained PDOS for a non-PVBS deviates fromfor the Mie resonance obtained by Johndd®]. For the

the Lorentzian form. Indeed, the Lorentzian fitting for non- purpose, Johnson's results are briefly mentioned in the

PVBSs is not good. This is a numerical proof that the local-following.
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By expanding the phase shift around the resonarﬁce intuition for the light scattering problem is discussed. The

:ki”a as subject in this context for the electron problems is discussed
\ .- \ in Ref.[24].

Br(X) =[B )] (x=x), (39) The expressions for the magnitude of hybridization be-
one can obtain the PDOS with respecktin the form of the ~ tween the PVBS and free modes, E(5}) and(25), remind
Breit-Wigner formula us of the surface integral. A surface integral should be related

to the corresponding volume integral through the Green’s
B BN theorem. In order to clarify the relation, let us start the equa-

(40 tions for a free transverse electric fidldE© +k2E©=0 and

dx  {LLB NI+ (x=x)? - e : :
for the electric fieldE influenced by the potential(r),
The Mie resonant widthw, =1/[8"(")]’, coming from the  v2E+K2E +U(r)E=0. After eliminating the terms including
resonance= X. , is reduced t418] k? and performing the volume integral for both sides over the
range ofr <a with use of the divergence-free condition, one

1 .
TE(, TE
W E) = —————— (41)  then obtains
W (P - DXP(E)
for the TE mode —f EQ.U(nE d3r=J dQ - [EQ X (VXE)-E
rsa r=a
1

TM/ ,TM
G ) = X (V X EO)]. 47
(2= DO+ DI ™2+ G ™) (v ED) “0
(42)  The surface integral in the right hand side results from ap-

plying Green'’s theorem for vector field&5]:

for the TM mode, wheres (x) = x'(X)/ x;(X).

In order to relateA}; to w)",, multiply both sides of Eq. 3 ) ——
(39) by x+x" and approximate-+x = 2x" for x in the vicin- Vd A -VB-B-VA]= SdQ [AX(VXB)
ity of x; one can then obtain

+A(V-B)-B X (V XA)
Br(x) = 2 M — (K= (7. (43) -B(V-A)], (48)
1,

where bothA andB are arbitrary vectors.

Consider the case of the TE mode where the electric field
is represented by . Using the identities of the spherical

L pe- (k)71 (44) 0 =N © _ ; :
| A* vectors VMW =kN'"™ and VXM =nkN, and integrating
out the angular components in the surface integral, one then

the relation between the Lorentzian widt}; and the Mie  has the identity
resonant Wldtth",(x) is obtained as

Since our result is written as

I1+1) ,
L2k N —f MO .UM o’ = 2 {klp [(nka) ¢(a)
AN == wh(x). (45) r<a
iTg
1
Here we introduce the variance of the width - Ezﬁ(nka)df.(a)} : (49
N
~\ = _,Ma (46) Note that the equation obtained holdsnticallyfor arbitrary

g = \
D K's.

; ; TE
in order to compare the numerically obtained wnﬂlh and Here, let us introduce the localized state. Bek; - for a

M The varlanceo),‘ for both TE and TM modes is super- given| which yields one of the PVBSs, then the right hand
i i side (RHS) of Eq. (49) is identified as

|mposed as solid circles in Figs. 3 and 4, respectively. The

overall behavior of the circles and the crosses, not only the 1(1+1) ,
solid crosses but also the dotted ones, is quite similar. This (RHY) = (K52
fact shows that disagreement betwe.@fh and D} for non- '
PVBSs is not caused by the approximation used for the anasjnce M in the volume integral now represents the PVBS

VIE. (50)

valid for PVBSs. r<aand the followmg approximation is allowed:
C. Identities from Green’s theorem _f MO .UM dr = _f MO .UM dr.
The magnitude of hybridization is intuitively related to a r<a r<R

volume integral between inside and outside “wave functions” (51)
multiplied by a “potential.” In this subsection, the relation
between the rigorous results for the hybridization and théOne eventually obtains
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e (K'F)? 5 11 (0) The PVBSs are expected to be repregented by two-l_e\_/el sys-
L= I+ 1) X J dr M tems, since they are localized excitations. The hybrld_lzatlon
r<R is then represented as a coupling between the Pauli matrix

X[d"vkiTE(r)] -U(r)M[z/;,(anTEr)]. (52) and Bose operators which denote free photons. A second

order perturbation, such as the Born-Markov method, is one
For the TM modegN field), a similar procedure with the use of the procedures to eliminate the photon degrees of freedom

of VXNO=kM© andV x N=nkM yields the identity and obtain an effective coupling of two-level systems. If the
TM)2 effective interaction is short range, the tight binding coupling

VM= (ki) % J & N© between the localized excitations in the dielectric spheres is
I(1+1) <R found[27]. The magnitude of the coupling should be directly

™ compared with the width of the flat photonic bands. This
X[¢'~kiTM(r)] -U(DNL#(nk™n)]. (53 scenario will be addressed in the near future.
It is true that the results derived through the vectorialelelariccogglﬁggni’sI'%T:nifgt;r'i?‘g tgronrg ifhtcr)]r(];or?;bnrﬁjci);;tig;
Green's theorem Eqg52) and (53) contain the identical between the localized mode excited in the dielectric sphere

forms of V'T'E and V'T'M obtained in Sec. I. The results and freely propagating modes. This theory is a photonic
through the Green’s theorem are, however, nothing but iden= y propagating L y b
ounterpart of the Anderson model in electron systems. The

tities. One can thus not immediately obtain the Fano model . . . . ;
that a localized statea PVBS, in the ?)lresent cass embed- purpose of this wo.rk is fulfilled _by showing th‘.”‘t the light
ded into free continuous moaes and cannot verify the hybrid_scattermg problem is formulated in a theory equivalent to the
T A Fano model. The analytic expression of the magnitude of the
ization. In order to conclude that the hybridization is well

. . o . . ; hybridization is obtained. The localized mode is identified
defined for the identified localized states, the discussion preguy, - pys, which satisfies the Mie resonant condition and
sented in Sec. Il is inevitable. . : ; .

the inequalityl/n<ka</ simultaneously. The comparison
between the PDOS represented by the Lorentzian(E8).

IV. CONCLUDING REMARKS and numerical results shows good agreement for the PVBSs,

The theory presented in th|s Work Corresponds to a phoWh|Ch guarantee.s Val|d|ty Of the present t_heOI’y. Th|S hybnd'
tonic counterpart of the Anderson model in electron systemdZzation theory yields a rigorous foundation for the heavy
where a magnetic impurity atom is located in a host metaPhoton concept for flat photonic bands.

[13,20. The essential point is the fact that a localized mode

is embedded in free continuous ques, that is, the_ Fano ACKNOWLEDGMENT

model. The key for the present work is to regard the dielec-

tric sphere as the impurity “atom” for free modes. As for a  This study was supported by a Grant-in-Aid for Scientific
localized mode, the PVBSs in the present study corresponBesearch from the Ministry of Education, Science, Sports
to d states in the impurity atom. Free propagating lights cor-and Culture of Japan.

respond tos electrons in the host metal. There is complete

one-to-one correspondence between photonic and electron

problems. In this sense, we can conclude that the present APPENDIX A: PROOF OF EQ. (10)

from scalar to vectorial wave functiohg6].

The fact that a dielectrisphereis treated in this study is (")
not essential for the present formulation, which was also re- dr? r2
ported in Ref[9]. A part of the reason to use a sphere is that o ) ] ]
we follow the original proposal in Ref9]. In addition there "€ solution is known to be written in terms of eigenfunc-
are advantages in using spherical systems as a convenierié@1s, of the corresponding homogeneous differential equa-

28 . . . .
of analytical handling and the capability of regarding thetion = The homogeneous differential equation is

+k2}F|'k(r,r’)=5(r—r’). (A1)

sphere as an impurity “atom.” For the case of dielectrics with () 1(01+1)

other shapes, the essential points are common with the L[p(r)] = >~ =3 H(r) +K2p(r)=0. (A2)
present work, although the difficulty of analytic treatment dr r

depends on the shape. Two independent fundamental solutions of this equation are

The present paper deals with the most fundamental prokhe Riccati-Bessel functionsy(kr) and x(kr). Let r
lem for establishment of the heavy photon concept. Althoughe [0 R] and R>1. The boundary conditions thép(r=0)|

it is essential, the following point should also be discussed ta- ., gnq #(R)=0 are imposed and the normalization condi-
demonstrate the usefulness of the heavy photon in PCs:

comparison of the photonic bandwidth calculated by “first

principles methods” and by a tight binding model formulated R )

through hybridization theory. In order to solve this problem, f |p(r)|"dr=1 (A3)

one has to derive the effective coupling between the PVBSs 0

excited in spheres. For the purpose it is needed to eliminate assumed. One can then obtain the following eigenfunc-
the photon degrees of freedom in the hybridization theorytions:
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(a0} = { \/glm(ksm}.

This is a complete function set. Siné&>1, one can write
the eigenvalues by using the asymptotic formypfas

(A4)

(A5)

with integers.
Here we expand- (r,r’) in terms of the complete set

{hs(n)} as

Fiadr,r’) =2 cor) i oh); (A6)
then the following identity holds:
LIFM]= 2 el =1 d ). (A7)

It reduces the inhomogeneous differential equation to

2=k =ar-r"). (A8)
Using the orthogonality
R
f @) g (r)dr = &g, (A9)
0
the expansion coefficie(r’) is determined as
¢I s(r )
cy(r') = : (A10)
L
The solution is obtained as
) P15(r') i s(r)
Frur,r’) = g w (A11)

On the other hand, one can derive another form of
Fix(r,r’). Forr#r’, the inhomogeneous differential equa-

tion is reduced to
dr

Considering the boundary condition tH&r - ,r~=R)=0 and

the symmetry for andr’

Fi(r,r') =Cy(kr)[Brn(kr) + xi(kr=)],  (A13)

whereC is a coefficient to be determined, ang,-., denotes
the smaller(large) one among andr’. The boundary con-
dition gives B}=-x,(kR/¢#(kR). Integrate the inhomoge-
neous differential equation from=r' —etor=r’+e and take
the limit e— 0; then

S, kz] FUhr)=0.  (A12)

dF _ dF =1. (A14)
ar |, oree  dr|ooo
Substitution of Eq(A13) turns Eq.(A14) into
CHs(kn)x'1(kr) = ¢/ (knx(kn]=1.  (A15)

Using the identityy’ — ¢’ x=-1, C is determined as

, one can write the general solution

PHYSICAL REVIEW E 71, 066607(2005

C=--.
k
Since one has obtained the two equivalent forms of
Fi«(r,r’), one can now prove that the identity E40) holds
for

(A16)

Gi(r) = BhL B (k) + x(kn)]. (A17)
Using the form
1
Fl,k(r<ar>) == EIM(kr<)[,8|)\lﬂ|(kr>) + xi(kr>)],
(A18)

one can show for > a that

IF (re,r d
% e = SFan=- ¥ \(ka)[ Bl dh(kr-)
+x(kr-)]. (A19)
The derivative ofg)) is
A
[an(@)]’ = ‘m'&'—:(r) _ =BokBY(ka) + ' (ka)].

(A20)
Using the above equations, one can obtain the following
identity:

[ah(@]'F(ar) - q|k(a) F|k(ar)

=B}l B (k) + xi(kn)]. (A21)

Similarly for r<a

JF I~ Jd
% . = %Fl,k(r:a) == h(kr)[ B (ka)
+x'1(ka)]. (A22)
Straightforward calculation yields
[0\ @] Fi @ - k(a) I:| War=0. (A23)

One has consequently the identity E#0).

APPENDIX B: DERIVATION OF EQ. (16)
In Appendix A, we showed that

d’l s(r)d)l s(r )
PR

+ xi(kr)].

One can define similar funcUorfsﬁk(r) F Mr), F 2(r), and
FC () and prove similar identities. The proof is parallel with
the one forF (r,r’). The definitions and the identities are
listed:

Fl,k(ryr,) = I,D|(|(I'<)[ﬂ| I,D|(|(I’>)

Fﬁk( )= E P, s(r)(bl o)

Te-e (B1)
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1
== kN[B (k) + (k)] (B2)
FBi(r) = iF (r,r+e (B3)
I,k ar K\l 0
==/, (k[ B (k) + xi(kn)], (B4)
Fo() = “F(rr - B5
LR(r) = ar W(r,r—e e (B5)
== (kN[ BN (kr) + x'\(kn)], (B6)
(92
Fo(r) = WFk(r,r’) (B7)
@' 14N’ «r)
2 Ted )
==k \(kn[ By (kr) + x',(kn)], (B9)
B N — d '
Frr,r’) = WFk(”) i (B10)
X L)
=§ Tkg (B11)

From simple calculations, the following identities are ob-

tained:
FoKr) - Fran =-1, (B12)
FPANFRR(N) = FR(NFR(), (B13)
1
FR(D) — FRUO =F - RN =2, (B14)

From these results, we can obtain Ef6) as follows.

Using the identity for the Riccati-Bessel functiongy’
-y’ x=-1, Eq.(6) is rewritten as

[xi(ka) + Bri(ka)] x [n“Dy(nka)gy(nka) — ¢/ (nka)] = - 1.
(B15)

This is turned into
n“kDy(nka)Ff\(a) - Fie(@) =1, (B16)

by usingFf} and FPL. Multiplying Eq. (B16) by F{(a) and
using the identities Eq$B12) and(B13), one has

FrankD(nka)FPt - Ff ] = 0. (B17)
SinceF2+0, use of Eq(B12) gives
n“kD(nka)F{2(a) - Ffi(a) =n“kD(nka).  (B19)

Eliminating F2 by using Eq.(B14), one can obtain

PHYSICAL REVIEW E 71, 066607(2005

n“kDy(a)F{(@) - Fii(@) = %n“kq(nka). (B19)

From Eq.(B14), Eq. (B16) is also expressed in another form

as

n“kDy(nka)F/\(a) - FP(@) = % (B20)

Substrate Eq.(B20) multiplied by n*kD,(nka) from Eg.
(B19), then
{n“kDy(nka)}’F{}(a) — 2n“kD(nka)FP (@) + Fii(@) = 0.
(B21)

Substitution of the eigenfunction representation$:@<f,Fﬁk,
andF{; yields

Y 2
5 [n”kD,(nka)IjZ|f(s§) ¢ @] =0. (B22)

APPENDIX C: WRONSKI THEOREM [29]

Letr €[0,R]. Consider the following two equations:

2
[% S e u<r>k2} =0,  (C

2
{%_ |(|r';1) +k/2+U(r)k,2:|(,Dkr(r):0, (CZ)

where

ur)=6a-r)(n>-1). (C3)
Impose thatp(r=0)=0 and that
R
f le(r)2dr =1. (c4)
0

Substrate Eq.C2) multiplied by ¢, from Eq.(C1) multiplied
by (2P then

d
E[‘Pk’(r)@,k(r) =@ (Nedr)]

+ (K= K'2[L +u(r)]er) g (r) =0.

Integrating fromr=0 to a, one can obtain

(CH

e@ ¢’ (@) = @' (@) g () = n?(kK* = k'?) J e g (r)ar.
0

(C6)
Suppose thak=k’, then one can approximate

a a

f o) @i (r)dr = f [ (]7dr. (C7
0 0

When ¢,/ (r) is quite localized in the region<a, that is,

a R
J |<Pk'(r)|2drEJ g (N)fPdr =1, (C8
0 0
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Eq. (C6) is turned into
¢' (@) (@) ~ e@ e’ (@) =-n* (kK -k'?).  (C9)

Dividing both sides byp(a) ¢, (a), one can obtain the final
form as

PHYSICAL REVIEW E 71, 066607(2005

o'@ew (@) - ela) e’ (a) __ k? - k'2
e@ e (a) e@ e (@)
|(2 _ kr2
~-n? . (c10
" o (a) (€19
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