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Light scattering from a homogeneous dielectric sphere is discussed in terms of hybridization between a
localized mode excited inside the dielectric sphere and free propagating modes in vacuum. This theory is a
photonic counterpart of the Anderson model in electron systems, yielding a rigorous theoretical foundation of
the heavy photon concept, which was numerically proposed for almost flat photonic bands. The magnitude of
the hybridization is analytically expressed. The localized mode is identified with the photon virtual bound state.
In order to confirm the validity of the present theory, a comparison is made between the present theory and
conventional numerical calculation for results of the photonic density of states.
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I. INTRODUCTION

The study of light scattering from a particle or an en-
semble of particles has a long history over a centuryf1g. In
particular, the scattering from a homogeneous dielectric
sphere is one of the central issues. The exact solution for the
scattering amplitude was obtained by Mief2g, which was
represented in the form of an infinite series. Since the con-
vergence of the series is not fast, extensive efforts to approxi-
mate Mie’s result both for analytic and for numerical calcu-
lations are made to obtain formulas suitable for practical
uses, depending on the specific regions of the plane of re-
fractive index and size parameterf1,3–5g. The outcome leads
to a basis for device development, such as a high-Q value
microsphere resonatorf6g.

The study of light scattering from a homogeneous dielec-
tric sphere is directed not only to practical purposes but also
to fundamental issues even nowadaysf7g. The fact that the
extensive studies of fundamental issues have been kept
shows that it is an inexhaustible spring. One example is the
complex angular momentum methodf8g. In the present pa-
per, the subject is illuminated from another fundamental
point of view, which is based on the heavy photon concept in
photonic crystalssPCsd f9g.

The heavy photon is an important concept to understand
certain photonic bands. In a PC—defined as a system with
periodic structure of dielectrics or metalsf10–12g—the pho-
ton dispersion relation is modified to construct photonic
bands. The photonic bands result from the interplay between
the scattering from the individual scatterer and the scattering
whose origin is the periodicity. The heavy photon is associ-
ated with the former aspect. Although details of the photonic
band structures depend on both a lattice structure and refrac-
tive index, one can find typical features: the photonic bands
that appear in a rather lower energy region are almost linear,
which can be understood from the empty lattice picture.
They are affected by the periodicity of the structure. On the

other hand, in the higher energy region where diffraction
channels open, there are almost flat photonic bands. The
heavy photon concept was proposed for the almost flat pho-
tonic bands of PCs made up of dielectric spheresf9g.1 In Ref.
f9g, it was numerically revealed that certain flat photonic
bands were characterized by a single eigenelectromagnetic
mode of a single dielectric sphere. It was also reported that
the width of such a photonic band agreed with the width of
the photonic density of statessPDOSd in light scattering from
a single dielectric sphere. Note that the PDOS characterizes
the increase of the photon density of states owing to the
introduction of the dielectric sphere into vacuum space.
From these two findings, they proposed that such a flat pho-
tonic band formation results from repetition of the following
single event: once a freely propagating mode enters a dielec-
tric sphere by tunneling, it stays for a momentslocalized
mode, in a sensed. It then escapes from the sphere and again
freely propagates.

This scenario immediately reminds us of the heavy fer-
mion, which is one of the important problems in electron
systemsf13g. In a typical case of a heavy fermion, a local-
ized d state in a magnetic impurity atom hybridizes with the
free s electrons in a host metal and obtains an itinerary to
construct an almost flat electronic band. The flatness is the
origin of the “heavy” quality. The hybridization is related to
the finite lifetime of the localized state, which determines the
Lorentzian width of the density of states. The essential point
is that a localized mode is embedded in free continuous
modes on the energy axis, which is described by the Fano
modelf14g. Analogously, the heavy photon concept is based
on the view that a certain localized mode excited in a dielec-
tric sphere is embedded in freely propagating modes and
hybridizes with the free modes. The heavy photon concept is
thus a vectorial extension of the heavy fermion and a quite
interesting problem.

The modes on these flat photonic bands are expected to
have several distinguished properties owing to the peculiar
mechanism of band formation. Indeed, interesting properties
of electromagnetic forces were reported for the photonic
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bands characterized by the heavy photon, which is expected
to play an essential role for fabrication of PCsf15g. Further-
more, the flatness of the photonic bands means considerable
reduction of the light group velocity. It leads to the effective
enhancement of the light-matter interaction. This enhance-
ment is expected to be important for device development.

In spite of the importance of the heavy photon concept for
both fundamental and application research, it is just an intui-
tive proposition based on numerical results with lack of a
rigorous foundation. The purpose of this paper is to give a
rigorous foundation to the heavy photon concept. Since the
heavy photon concept is associated with the individual con-
stituent scatterers of the PC, as stated previously, it is essen-
tial to discuss the single sphere problem. In order to establish
the heavy photon concept, the following points should be
discussed. The hybridization between a localized mode ex-
cited inside a dielectric sphere and freely propagating modes
should be verified and the localized mode identified. The
magnitude of the hybridization should be clarified. For dem-
onstration of the validity of the present theory, the PDOS
obtained from this theory should be compared with numeri-
cal results. All of these points are addressed in this study.

The organization of this paper is as follows. In Sec. II, the
hybridization between a localized mode and free propagation
modes is shown to be well defined by formulating the prob-
lem of light scattering from a homogeneous dielectric sphere
into the Fano model. The analytic expressions of the magni-
tude of the hybridization are obtained. Section III gives a
comparison of the PDOS given by the present theory with
numerical results in order to verify the present theory, where
special attention is paid to the width of the PDOS. The lo-
calized mode is identified. Finally, conclusions and future
problems are given in Sec. IV. Derivations of several impor-
tant equations and supporting materials are shown in the
Appendixes.

II. THEORY

A. Summary of conventional method for electromagnetic wave
in space including a dielectric sphere

For later use, the results are summarized for the propaga-
tion of electromagnetic waves in the geometry that a dielec-
tric sphere with constant refractive indexn and radiusa is
located at the center of a vacuum sphere with radiusR@a.2

The condition that electromagnetic wave should vanish at the
vacuum sphere boundaryr =R is imposed. The equation that
the transverse electric field obeys is

¹2E + k2E + UsrdE = 0, s1d

wherek is the wave number of the electric field in vacuum.
Usrd denotes the “effective potential” caused by the dielec-
tric sphere asU=k2sn2−1dusa−rd, where usrd is the step
function. The two independent solutions are the vector
spherical waves, theM wave sTE moded and N wave sTM

moded, both of which are characterized byRl,ksrd satisfying
f16g

F d2

dr2 −
lsl + 1d

r2 + k2 + UsrdGRl,ksrd = 0. s2d

Two independent fundamental solutions forRl,ksrd are known
to be the Riccati-Bessel functionsclsxd;xjlsxd and xlsxd;
−xnlsxd, where j lsxd and nlsxd are the lth order spherical
Bessel and spherical Neumann functions, respectivelyf1g.

Let us introduce the radial functions

Rl,k
l sxd = Hpl,k

l srd sr , ad,

ql,k
l srd sr . ad,

J s3d

wherel indicates the TEsM waved or TM sN waved mode.
From analyticity at the origin, the general solutions are writ-
ten as

pl,k
l srd = Bin

l clsnkrd, s4d

ql,k
l srd = Bout

l fbl
lclskrd + xlskrdg, s5d

respectively. The prefactorsBinsoutd
l are not essential in the

following discussion. The coefficientbl
l is determined by the

boundary condition atr =a as

bl
l = −

x8lskad − nmDlsnkadxlskad
c8lskad − nmDlsnkadclskad

, s6d

where m= +1s−1d for l=TE sTMd, respectively, and
Dlsnkad;c8lsnkad /clsnkad. It should be noted thatbl

l is
represented by the phase shift of a partial wave with angular
momentuml asbl

l=cotdl
l f17g. The boundary condition that

ql,k
l sRd=0 givesbl

l=−xlskRd /clskRd. Then the allowedk’s in
this geometry are determined. Remember that these results
do not depend on the confinement nature of the electromag-
netic wave inside the dielectric sphere.

B. Hybridization between a localized mode and free modes

This subsection, which is the main part of the present
work, presents a hybridization theory between a localized
mode inside the dielectric sphere and free propagating modes
in vacuum space. For the purpose, the task is to rewrite the
results summarized in the previous subsection into the
equivalent form to the one derived from the Fano model
f14g. After the foundation, the PDOS is analytically obtained.
As for the localized state, the Mie resonant states are taken as
the candidates, since wave functions for the Mie resonant
states are known to be quite localized inside the dielectric
spheref18g. It should be refined later if it is necessary.

1. Wave function

In the first place, free modes in the vacuum spherewith-
out the dielectric sphere are analyzed. Consider a function
fl,ksrd that satisfies

2Since the procedure of this study is to express in terms of a phase
shift how much free modes are affected by a localized mode, it is
convenient to discretize the free modes.
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F d2

dr2 −
lsl + 1d

r2 + k2Gfl,ksrd = 0, s7d

under the boundary condition thatfl,ksr =Rd=0 and the nor-
malization condition that

E
0

R

fl,k
2 srddr = 1. s8d

The boundary condition discretizes allowedk’s as ks=ss
+ l /2dp /R with integers, where the asymptotic form of the
Riccati-Bessel function is used. The radial function charac-
terizing free modes is then obtained as

fl,ssrd =Î2

R
clsksrd. s9d

The main task for the present purpose is to expandql,k
l srd

in terms offl,ssrd’s. This is mathematically equivalent to the
Fourier-Bessel expansion ofql,k

l srd. Instead of directly per-
forming the Fourier-Bessel expansion, we extend a conve-
nient method proposed by Kondof19g for the Anderson
model in electron systemsf13,20g. For the expansion, the
following identity is used:

fql,k
l sadg8Fl,ksa,rd − ql,k

l sad
]

]a
Fl,ksa,rd = Hql,k

l srd sr . ad,

0 sr , ad,
J

s10d

whereFl,ksr ,r8d is defined as

Fl,ksr,r8d ; o
s

fl,ssr8dfl,ssrd
k2 − ks

2 . s11d

The proof of this identity is given in Appendix A. Insertion
of the definition ofFl,ksr ,r8d yields for r .a

ql,k
l srd = o

s

fql,k
l sadg8fl,ssad − ql,k

l sadfl,s8 sad
k2 − ks

2 fl,ssrd. s12d

Remember that the right hand side of this equation identi-
cally vanishes forr ,a, as is desired. Making use of the
boundary conditions atr =a that ql,k

TEsad=s1/ndpl,k
TEsad and

fql,k
TEsadg8=s1/ndfpl,k

TEsadg8 for the TE mode, andql,k
TMsad

=pl,k
TMsad and fql,k

TMsadg8=s1/n2dfpl,k
TMsadg8 for the TM mode,

we replaceql,k
l sad and fql,k

l sadg8 in Eq. s12d with pl,k
l sad and

fpl,k
l sadg8, respectively.
Here let us consider suchpl,k

l srd’s that satisfy the condi-
tion that

E
0

a

upl,k
l srdu2dr

E
0

R

upl,k
l srdu2dr

> 1. s13d

In this case, one can safely addpl,k
l srd to ql,k

l srd obtained
above to constructRl,k

l srd for 0, r ,R, sincepl,k
l srd has neg-

ligible amplitude outside the dielectric sphere. Following the
standard proceduref16g, the spherical vector waves associ-
ated with theRl,k

l srd’s are obtained as

M fRl,k
TMsrdg = M fpl,k

TEsrdg +
1

n

3o
s

fpl,k
TEsadg8fl,ssad − pl,k

TEsadfl,s8 sad
k2 − ks

2 M ffl,ssrdg

s14d

and

NfRl,k
TMsrdg = Nfpl,k

TMsrdg

+ o
s

n−2fpl,k
TMsadg8fl,ssad − pl,k

TMsadfl,s8 sad
k2 − ks

2

3Nffl,ssrdg, s15d

respectively.
The addition ofpl,k

l srd to ql,k
l srd is expected to be valid for

suchk=hki
lsk1

l,k2
l, ¯ dj that satisfies the resonant condi-

tion bl
lski

ld=0, or the Mie resonance conditiondl
l=p /2

smod pd f1g. This is because the most part of the amplitude
of the Mie resonant state is known to be within the region
r ,a f18g. In the following discussion,pl,k

l srd is assumed to
be the Mie resonant state.

2. Secular equation

The wave functions are represented in the form of hybrid-
ization between the localized mode characterized bypl,k

l srd
and freely propagating modes characterized byfl,ssrd’s in
the previous subsection. It is, however, not sufficient for con-
struction of the hybridization theory. Equivalence to the Fano
model should be shown. For the purpose, we derive an equa-
tion equivalent to Eq.s6d by using fl,ssrd instead of both
clskrd andxlskrd, which should have the equivalent form to
the one derived from the Fano model. The equation obtained
should determine the “eigenvalues”k’s.

After some algebra, details of which are given in Appen-
dix B, Eq. s6d is rewritten as

o
s

fnmkDlsnkadfl,ssad − fl,s8 sadg2

k2 − ks
2 = 0. s16d

Let us expandLl
lskd;nmkDlsnkad aroundk=ki

l with appli-
cation of the Wronski theorem, shown in Appendix C. Here
ki

l satisfies the resonant conditionbl
lski

ld=0, resulting in the
fact that the condition Eq.sC8d is well satisfied. From Eq.
sC10d, one has

Ll
lskd = Ll

lski
ld − n1+m

k2 − ski
ld2

cl
2snki

lad
. s17d

In the following, DLl
l;−n1+mfk2−ski

ld2g /cl
2snki

lad is de-
fined. Substituting Eq.s17d for Eq. sB21d and omitting
higher order terms thanO(sDLd2), then

fLl
lski

ldg2Fl,k
A sad − 2Ll

lski
ldFl,k

B sad + Fl,k
C sad = − DLl

l,

s18d

where Eqs.sB13d and sB16d are used. Using explicit forms
of Fl,k

A ,Fl,k
B ,Fl,k

C , andLl
lski

ld, Eq. s16d is rewritten as
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E − Ei
l = o

s

fvl,s,i
l g2

E − Es
, s19d

where

vl,s,i
l = ki

lnsm−1d/2c8lsnki
ladfl,ssad − n−sm+1d/2clsnki

ladfl,s8 sad,

s20d

E=k2, Ei
l=ski

ld2, and Es=ks
2. Remember that the form of

,1/sk2−ks
2d is associated with the photon Green’s function

f21g.3

Equationss14d, s15d, and s19d show that the formulation
presented in this paper is equivalent to the Fano modelf14g,
where a localized mode labeled withi is embedded in con-
tinuous free modesslabeled withsd, and that the two modes
are hybridized whose magnitude is denoted byvl,s,i

l . This
equivalence is understood when one remembers the follow-
ing simple fact. Consider the Fano model HamiltonianHF:

HF = o
s

esuslksu + eiuilki u + o
s

fVsuslki u + H.c.g . s21d

Here usl and uil denote continuous modes and a localized
mode, respectively, andes,ei, andVs are the eigenenergy of
usl, eigenenergy ofuil, and magnitude of the hybridization of
both modes, respectively.Vs is assumed to be real. In order
to solve the eigenvalue problemHFuCl=euCl, consider an
eigenfunction in the form ofuCl= uil+oscsusl. The coeffi-
cient is then determined ascs=Vs/ se−esd, and the secular
equation to determinee is obtained as

e − ei = o
s

fVsg2

e − es
. s22d

One can easily see that this eigenvalue equation has the same
form as Eq.s19d. It is then concluded that Eq.s20d correctly
represents the magnitude of hybridization between theith
localized mode inside the dielectric sphere and the freely
propagating modes.

3. Photonic density of states

The PDOS is discussed in order to demonstrate the valid-
ity of the present formulation. The PDOS characterizes the
increase of the number of the states owing to introduction of
the dielectric sphere into vacuum. In order to obtain the
PDOS from the present hybridization theory, one needs to
perform the summation in Eq.s19d. It is generally impossible
to analytically perform the summation with respect tos be-
cause of thes dependence of the numeratorvl,s,i

l . For analytic

calculation, consider the stateshksj in the vicinity of suchks0

l

thatks0

l <ki
l, then it is shown thatvl,s,i

l does not depend ons,
which is denoted byVl,i

l in the following. The secular equa-
tion is then simplified as

E − Ei
l = fVl,i

l g2o
s

8
1

E − Es
. s23d

The prime shows that the summation with respect tos is
restricted in the vicinity ofks0

l . The explicit form of the hy-
bridizationVl,i

l for each mode is now expressed as

Vl,i
TE = ki

TEc8lsnki
TEadfl,isad −

1

n
clsnki

TEadfl,i8 sad, s24d

Vl,i
TM = ki

TM 1

n
c8lsnki

TMadfl,isad − clsnki
TMadfl,i8 sad, s25d

respectively, wherefl,isad is obtained by replacement ofks in
fl,ssad with ki

l. The discretized statesEs’s are represented as
Es=sDE with integers and level separationDE=pk/R. The
“energy” E to be determined is the one that is energetically
shifted fromEs0

as a result of being influenced by the em-
bedded localized mode. The shift is related to a phase shift.
One thus setsE in the denominator of Eq.s23d as E
=DEss0−dl

l /pd:

E − Ei
l = fVl,i

l g2o
s

8
1

DEss0 − dl
l/pd − sDE

. s26d

Here one can allow removing the restriction of the summa-
tion because the contribution froms states far away froms0
is negligible. This approximation enables one to analytically
perform the summation to yield

E − Ei
l = −

pfVl,i
l g2 cotdl

l

DE
. s27d

The derivative ofdl
l with respect toE is known to give the

PDOS as a function ofE, which is

ddl
l

dE
=

Dl,i
l

sE − Ei
ld2 + fDl,i

l g2 . s28d

The Dl,i
l ;pfVl,i

l g2/DE’s are represented as

Dl,i
TE = 2ki

TEFc8lsnki
TEadclski

TEad −
1

n
clsnki

TEadc8lski
TEadG2

,

s29d

Dl,i
TM = 2ki

TMF1

n
c8lsnki

TMadclski
TMad − clsnki

TMadc8lski
TMadG2

,

s30d

respectively. When using the explicit form of the resonant
conditions

c8lsnki
TEadxlski

TEad −
1

n
clsnki

TEadx8lski
TEad = 0 s31d

for the TE mode and

3Use of k2 in this work is reasonable for the present purpose, in
contrast to use of the dimensionless size parameterx=ka which is
generally used for the Mie scattering problem. The reason is as
follows. The procedure for our purpose is to express how much free
modes are affected by the induced localized mode, where the local-
ized mode plays a role of an impurity scatterer for free modes. It is
then appropriate to express the influence for free modes from the
localized mode by the Green’s function, as in the case of the Born
series. For time delay and dwell time problems, the use ofk2 is
discussed inf22g.
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1

n
c8lsnki

TMadxlski
TMad − clsnki

TMadx8lski
TMad = 0 s32d

for the TM mode, those results are simplified as

Dl,i
TE = 2ki

TEFclsnki
TEad

nxlski
TEad G2

s33d

and

Dl,i
TM = 2ki

TMFclsnki
TMad

xlski
TMad G2

, s34d

respectively. These are the formulas for the width of the
PDOS. Note that there is noR dependence of the width. The
fact that Eq.s28d is given by Lorentzian shows that the life-
time of the localized mode becomes finite as a result of hy-
bridization with free modesf22g.

III. DISCUSSION

A. Comparison of PDOS between analytic
and numerical results

A comparison is made between the analytic result Eq.s28d
and numerical results for the PDOS in order to check the
validity of the present theory. In the following, the refractive

index is set asn=3.0, anda is taken as the unit length. The
numerical results of the PDOS are obtained from the deriva-
tive of the numerically obtained phase shiftdl,num

l with re-
spect toE=k2. The phase shiftdl,num

l of the partial wave of
the l mode withl is calculated by Eq.s6d. The derivative of
the phase shift gives peaks, each of which is numbered from
i =1 in the manner thatki=1

l ,ki=2
l ,¯. Each peak of the

PDOS is thus labeled by a set ofsl , l , id. The peaks are
referred to as numerically obtained PDOS in the following.

Figures 1 and 2 are results of the comparison. Figures
1sad–1sdd show the first four peaks of the PDOS fromi =1
through i =4 for the TE mode withl =5. The solid line rep-
resents the Lorentzian obtained by the present theory, Eq.
s28d, and the dotted line represents the numerically obtained
PDOS,ddl=5,num

l=TE /dE. One can see that the first three plots
show good agreement between the present analytical and the
numerical results. In contrast, the fourth one has a large de-
viation in spite of the fact that the peak in Fig. 1sdd also
originates from the Mie resonance as well as the other peaks
showing good agreement. The comparison for TM modes is
shown in Figs. 2sad–2scd, where the first three peaks of the
PDOS from i =1 through i =3 for the mode withl =5 are
presented. The first two peaks show good agreement with
numerical results,ddl=5,num

l=TM /dE. The third one, however,
shows disagreement, whose situation is similar to the case of
the TE mode.

FIG. 1. PDOS with sl , l , id
=sTE,5,id, wherei =1 sad, 2 sbd, 3
scd, and 4sdd. The refractive index
is set asn=3.0, and the radius of
the dielectric sphere is taken as
the unit length. The solid lines
represent analytic results of the
PDOS, the Lorentzian given by
Eq. s28d, and the dotted lines rep-
resent the numerically obtained
PDOS, ddl=5,num

TE /dE. It is clear
that the first three peaks show
good agreement. On the contrary,
the fourth peak shows less agree-
ment, although all these four
peaks originate from Mie reso-
nance. The unit of the horizontal
sverticald axis is flengthg−2s+2d,
e.g.,fmmg−2s+2d whena=1 mm.
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For otherl ’s, the similar behavior that the first few peaks
show good agreement is observed for both TE and TM
modes. Let us focus on the full width of the half maximum
of the peakssreferred to as width, in the followingd and
discuss it quantitatively. The width ofddl,num

l /dE sthe dotted
lines in Figs. 1 and 2d is denoted asDl,i

l . Dl,i
l is evaluated by

the Lorentzian fitting by using the least squares method. In
order to measure the deviation between the Lorentzian width
of the present theoryDl,i

l andDl,i
l , the variance of the width is

introduced, defined as

sl,i
l ;

Dl,i
l − Dl,i

l

Dl,i
l . s35d

Figures 3 and 4 show thesl,i
l ’s against the peak numbersi

with l =1, 3, 5, and 7 for TE and TM modes, respectively.
Solid crosses are used for the peaks showing good agree-
ment, and the dotted crosses are for ones with less agree-
ment. Note that Figs. 3scd and 4scd correspond to Figs. 1 and
2, respectively. It is easy to see that the present theory shows
good agreement with numerical results for the first several
peaks, but not all. Remember that all peaks, whether show-
ing good or less good agreement, satisfy the Mie resonant
condition bl

lski
ld=cotdl

l=0, which are expected to have
commonly quite localized nature inside a dielectric sphere. It
is obvious that there is a criterion on theE=k2 axis, beyond

which Eq.s28d shows less agreement with numerical results,
and that the criterion depends onl. Careful observation re-
veals that the conditionl /n,ki

la, l is satisfied for the peaks
showing good agreement. The states that satisfy both the Mie
resonant condition and this inequality are the photon virtual
bound statessPVBSsd f23g. Peaks showing good agreement
with numerical results are then concluded to originate from
PVBSs.

For completeness of the discussion, a brief summary of
the PVBS is given. The details of the derivation are shown in
Ref. f23g. The PVBS is defined as the state that satisfies both
the Mie resonant condition cotdl

lskd=0 and the inequality
l /n,ka, l simultaneously. Under the inequality, the reso-
nant conditions are rewritten in the following form:

nka−
l

2
p = Np +

l + 1

nka
s36d

for the TE mode and

nka−
l

2
p = Np −

nka

n2sl + 1d
s37d

for the TM mode with integerN. The meaning of “virtual” is
the following: consider a gedanken case where an infinite
barrier is located at the boundary of the dielectric sphere with

FIG. 2. PDOS with sl , l , id
=sTM,5,id, wherei =1 sad, 2 sbd,
and 3scd. Parameters are the same
as the ones in Fig. 1. The solid
lines represent analytic results of
the PDOS, the Lorentzian given
by Eq. s28d, and the dotted lines
represent the numerically obtained
PDOS, ddl=5,num

TM /dE. It is clear
that the first two peaks show good
agreement. On the contrary, the
third peak shows less agreement,
although all these three peaks
originate from Mie resonance. For
the unit of the axes, see the cap-
tion of Fig. 1.
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radiusa. In this case, the electromagnetic wave is completely
bounded inside the dielectric sphere. The condition which
determines the wave number is

nka−
l

2
p = Np. s38d

This equation, the completely bound condition, should be
compared with Eqs.s36d ands37d. Both of the two equations
have small correction terms, the second terms in the right
hand sides, comparing with Eq.s38d. Since the gedanken
case will not occur for dielectrics, PVBSs are the most
bounded states for actual electromagnetic wave for a dielec-
tric sphere. Note that the conditionl /n,ka, l was pre-
sentedschematicallyin Ref. f8g. For later convenience, the
state that satisfies the Mie resonant condition but does not
satisfy the inequalityl /n,ka, l is referred to as non-PVBS
in the following.

Figures 3 and 4 show that the hybridization theory is valid
for PVBSs but not for non-PVBSs. The reason of disagree-
ment for non-PVBSs is that the assumption Eq.s13d breaks.
The non-PVBSs are not influenced by the “confinement po-
tential well” lsl +1d / r2−Usrd as PVBSs aref23g. The local-
ized nature is thus poor. In addition, it is confirmed that the
numerically obtained PDOS for a non-PVBS deviates from
the Lorentzian form. Indeed, the Lorentzian fitting for non-
PVBSs is not good. This is a numerical proof that the local-

ized nature of the non-PVBS is quite poor. The hybridization
theory is then not well defined for non-PVBSs.

It is not essential that only the cases with oddl ’s are
presented here. The reason is that under the present param-
eter conditions the numbers of peaks showing good agree-
ment forl =2l0−1 and 2l0 are found to be the same. Note that
the smallest angular momentum for the spherical vector
wave is l0=1. The hybridization theory does not depend on
whetherl is odd or even.

In Figs. 3 and 4, only one peak showing disagreement
sdotted crossesd is presented for eachl and there are no plots
for further non-PVBSs. This is because there is no sense
after breaking the basic assumption for the hybridization
theory that the localized states should be localized.

In summary, the hybridization theory between the local-
ized state and freely propagating modes for light scattering
problem from a dielectric sphere is established for PVBSs
and the localized mode is identified with a PVBS.

B. The relation to the result from the Breit-Wigner formula

One might think that the disagreement of the PDOS for
non-PVBSs is caused by a lack of validity of the approxima-
tion for the summation in Eq.s26d used to have the analytic
result of the PDOS, although the reason for the disagreement
is discussed in the previous subsection. In order to reconfirm
it, we refer to the previously reported results of the width
for the Mie resonance obtained by Johnsonf18g. For the
purpose, Johnson’s results are briefly mentioned in the
following.

FIG. 3. Comparison of the width of the PDOS for the TE mode
between the analytic result Eq.s33d and the numerically obtained
results. The crosses showsl,i

TE plotted against the peak numberi for
l =1, 3, 5, and 7 insad, sbd, scd, andsdd, respectively. Solid crosses
are used for peaks showing good agreement and dotted crosses for
peaks showing less agreement. Solid circles shows̃l,i

TE for compari-
son between the present theory and the previously reported results.
Solid circle for i =2 in sad is out of range; it is evaluated as
s̃l=1,i=2

TE =−4.56.

FIG. 4. Comparison of the width of the PDOS for the TM mode
between the analytic result Eq.s34d and numerically obtained re-
sults. The crosses showsl,i

TM plotted against the peak numberi for
l =1, 3, 5, and 7 insad, sbd, scd, andsdd, respectively. Solid crosses
are used for peaks showing good agreement and dotted crosses for
peaks showing less agreement. Solid circles shows̃l,i

TM for compari-
son between the present theory and the previously reported results.
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By expanding the phase shift around the resonancexi
l

=ki
la as

bl
lsxd > fbl

lsxi
ldg8sx − xi

ld, s39d

one can obtain the PDOS with respect tox in the form of the
Breit-Wigner formula

ddl
l

dx
=

1/fbl
lsxi

ldg8
h1/fbl

lsxi
ldg8j2 + sx − xi

ld2 . s40d

The Mie resonant widthwl,i
l ;1/fbl

lsxi
ldg8, coming from the

resonancex=xi
l, is reduced tof18g

wl,i
TEsxi

TEd =
1

sn2 − 1dxl
2sxi

TEd
s41d

for the TE mode

wl,i
TMsxi

TMd =
1

sn2 − 1dxl
2sxi

TMdflsl + 1d/snxi
TMd2 + Gl

2sxi
TMdg

s42d

for the TM mode, whereGlsxd;x8lsxd /xlsxd.
In order to relateDl,i

l to wl,i
l , multiply both sides of Eq.

s39d by x+xi
l and approximatex+xi >2xi

l for x in the vicin-
ity of xi

l; one can then obtain

bl
lsxi

ld >
a

2kiwl,i
l fk2 − ski

ld2g. s43d

Since our result is written as

bl
l =

1

Dl,i
l fk2 − ski

ld2g, s44d

the relation between the Lorentzian widthDl,i
l and the Mie

resonant widthwl,i
l sxid is obtained as

Dl,i
l =

2ki
l

a
wl,i

l sxi
ld. s45d

Here we introduce the variance of the width

s̃l,i
l ;

Dl,i
l − s2ki

l/adwl,i
l

Dl,i
l , s46d

in order to compare the numerically obtained widthDl,i
l and

wl,i
l . The variances̃l,i

l for both TE and TM modes is super-
imposed as solid circles in Figs. 3 and 4, respectively. The
overall behavior of the circles and the crosses, not only the
solid crosses but also the dotted ones, is quite similar. This
fact shows that disagreement betweenDl,i

l and Dl,i
l for non-

PVBSs is not caused by the approximation used for the ana-
lytic calculations and that the present hybridization theory is
valid for PVBSs.

C. Identities from Green’s theorem

The magnitude of hybridization is intuitively related to a
volume integral between inside and outside “wave functions”
multiplied by a “potential.” In this subsection, the relation
between the rigorous results for the hybridization and the

intuition for the light scattering problem is discussed. The
subject in this context for the electron problems is discussed
in Ref. f24g.

The expressions for the magnitude of hybridization be-
tween the PVBS and free modes, Eqs.s24d ands25d, remind
us of the surface integral. A surface integral should be related
to the corresponding volume integral through the Green’s
theorem. In order to clarify the relation, let us start the equa-
tions for a free transverse electric field¹2Es0d+k2Es0d=0 and
for the electric fieldE influenced by the potentialUsrd,
¹2E+k2E+UsrdE=0. After eliminating the terms including
k2 and performing the volume integral for both sides over the
range ofr ,a with use of the divergence-free condition, one
then obtains

−E
røa

Es0d ·UsrdE d3r =E
r=a

dV · fEs0d 3 s= 3 Ed − E

3 s= 3 Es0ddg. s47d

The surface integral in the right hand side results from ap-
plying Green’s theorem for vector fieldsf25g:

E
V

d3rfA ·¹2B − B ·¹2Ag =E
S

dV · fA 3 s= 3 Bd

+ As= ·Bd − B 3 s= 3 Ad

− Bs= ·Adg, s48d

where bothA andB are arbitrary vectors.
Consider the case of the TE mode where the electric field

is represented byM . Using the identities of the spherical
vectors =3M s0d=kNs0d and =3M =nkN, and integrating
out the angular components in the surface integral, one then
has the identity

−E
røa

M s0d ·UsrdM d3r =
lsl + 1d

k2 Fkc8lsnkadflsad

−
1

n
clsnkadf8lsadG . s49d

Note that the equation obtained holdsidentically for arbitrary
k’s.

Here, let us introduce the localized state. Setk=ki
TE for a

given l which yields one of the PVBSs, then the right hand
side sRHSd of Eq. s49d is identified as

sRHSd =
lsl + 1d
ski

TEd2 Vl,i
TE. s50d

Since M in the volume integral now represents the PVBS
characterized byk=ki

TE, the field is quite well localized for
r ,a and the following approximation is allowed:

−E
røa

M s0d ·UsrdM d3r > −E
røR

M s0d ·UsrdM d3r .

s51d

One eventually obtains
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Vl,i
TE = −

ski
TEd2

lsl + 1d
3 E

røR

d3r M s0d

3ffl,ki
TEsrdg ·UsrdM fclsnki

TErdg. s52d

For the TM modesN fieldd, a similar procedure with the use
of =3Ns0d=kM s0d and=3N=nkM yields the identity

Vl,i
TM = −

ski
TMd2

lsl + 1d
3 E

røR

d3r Ns0d

3ffl,ki
TMsrdg ·UsrdNfclsnki

TMrdg. s53d

It is true that the results derived through the vectorial
Green’s theorem Eqs.s52d and s53d contain the identical
forms of Vl,i

TE and Vl,i
TM obtained in Sec. II. The results

through the Green’s theorem are, however, nothing but iden-
tities. One can thus not immediately obtain the Fano model
that a localized statesa PVBS, in the present cased is embed-
ded into free continuous modes and cannot verify the hybrid-
ization. In order to conclude that the hybridization is well
defined for the identified localized states, the discussion pre-
sented in Sec. II is inevitable.

IV. CONCLUDING REMARKS

The theory presented in this work corresponds to a pho-
tonic counterpart of the Anderson model in electron systems,
where a magnetic impurity atom is located in a host metal
f13,20g. The essential point is the fact that a localized mode
is embedded in free continuous modes, that is, the Fano
model. The key for the present work is to regard the dielec-
tric sphere as the impurity “atom” for free modes. As for a
localized mode, the PVBSs in the present study correspond
to d states in the impurity atom. Free propagating lights cor-
respond tos electrons in the host metal. There is complete
one-to-one correspondence between photonic and electron
problems. In this sense, we can conclude that the present
theory is a photonic Anderson model, which is an extension
from scalar to vectorial wave functionsf26g.

The fact that a dielectricsphereis treated in this study is
not essential for the present formulation, which was also re-
ported in Ref.f9g. A part of the reason to use a sphere is that
we follow the original proposal in Ref.f9g. In addition there
are advantages in using spherical systems as a convenience
of analytical handling and the capability of regarding the
sphere as an impurity “atom.” For the case of dielectrics with
other shapes, the essential points are common with the
present work, although the difficulty of analytic treatment
depends on the shape.

The present paper deals with the most fundamental prob-
lem for establishment of the heavy photon concept. Although
it is essential, the following point should also be discussed to
demonstrate the usefulness of the heavy photon in PCs: a
comparison of the photonic bandwidth calculated by “first
principles methods” and by a tight binding model formulated
through hybridization theory. In order to solve this problem,
one has to derive the effective coupling between the PVBSs
excited in spheres. For the purpose it is needed to eliminate
the photon degrees of freedom in the hybridization theory.

The PVBSs are expected to be represented by two-level sys-
tems, since they are localized excitations. The hybridization
is then represented as a coupling between the Pauli matrix
and Bose operators which denote free photons. A second
order perturbation, such as the Born-Markov method, is one
of the procedures to eliminate the photon degrees of freedom
and obtain an effective coupling of two-level systems. If the
effective interaction is short range, the tight binding coupling
between the localized excitations in the dielectric spheres is
foundf27g. The magnitude of the coupling should be directly
compared with the width of the flat photonic bands. This
scenario will be addressed in the near future.

In conclusion, light scattering from a homogeneous di-
electric sphere is formulated in terms of the hybridization
between the localized mode excited in the dielectric sphere
and freely propagating modes. This theory is a photonic
counterpart of the Anderson model in electron systems. The
purpose of this work is fulfilled by showing that the light
scattering problem is formulated in a theory equivalent to the
Fano model. The analytic expression of the magnitude of the
hybridization is obtained. The localized mode is identified
with a PVBS, which satisfies the Mie resonant condition and
the inequalityl /n,ka, l simultaneously. The comparison
between the PDOS represented by the Lorentzian Eq.s28d
and numerical results shows good agreement for the PVBSs,
which guarantees validity of the present theory. This hybrid-
ization theory yields a rigorous foundation for the heavy
photon concept for flat photonic bands.
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APPENDIX A: PROOF OF EQ. (10)

Consider the inhomogeneous differential equation

F d2

dr2 −
lsl + 1d

r2 + k2GFl,ksr,r8d = dsr − r8d. sA1d

The solution is known to be written in terms of eigenfunc-
tions of the corresponding homogeneous differential equa-
tion 28. The homogeneous differential equation is

Lffsrdg ;
d2fsrd

dr2 −
lsl + 1d

r2 fsrd + k2fsrd = 0. sA2d

Two independent fundamental solutions of this equation are
the Riccati-Bessel functionsclskrd and xlskrd. Let r
P f0,Rg and R@1. The boundary conditions thatufsr =0du
,` andfsRd=0 are imposed and the normalization condi-
tion

E
0

R

ufsrdu2dr = 1 sA3d

is assumed. One can then obtain the following eigenfunc-
tions:
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hfl,ssrdj = HÎ2

R
clsksRdJ . sA4d

This is a complete function set. SinceR@1, one can write
the eigenvalues by using the asymptotic form ofcl as

ks =
p

R
Ss+

l

2
D , sA5d

with integers.
Here we expandFl,ksr ,r8d in terms of the complete set

hfl,ssrdj as

Fl,ksr,r8d = o
s

cssr8dfl,ssrd; sA6d

then the following identity holds:

LfFl,ksr,r8dg = o
s

cssr8dsk2 − ks
2dfl,ssrd. sA7d

It reduces the inhomogeneous differential equation to

o
s

cssr8dsk2 − ks
2dfl,ssrd = dsr − r8d. sA8d

Using the orthogonality

E
0

R

fssrdfs8srddr = dss8, sA9d

the expansion coefficientcssr8d is determined as

cssr8d =
fl,ssr8d
k2 − ks

2 . sA10d

The solution is obtained as

Fl,ksr,r8d = o
s

fl,ssr8dfl,ssrd
k2 − ks

2 . sA11d

On the other hand, one can derive another form of
Fl,ksr ,r8d. For r Þ r8, the inhomogeneous differential equa-
tion is reduced to

F d2

dr2 −
lsl + 1d

r2 + k2GFl,ksr,r8d = 0. sA12d

Considering the boundary condition thatFsr, ,r.=Rd=0 and
the symmetry forr andr8, one can write the general solution

Fl,ksr,r8d = Cclskr,dfbl
lclskr.d + xlskr.dg, sA13d

whereC is a coefficient to be determined, andr,s.d denotes
the smallerslargerd one amongr and r8. The boundary con-
dition gives bl

l=−xlskRd /clskRd. Integrate the inhomoge-
neous differential equation fromr =r8−e to r =r8+e and take
the limit e→0; then

UdF

dr
U

r=r8+e

− UdF

dr
U

r=r8−e

= 1. sA14d

Substitution of Eq.sA13d turns Eq.sA14d into

Ckfclskrdx8lskrd − c8lskrdxlskrdg = 1. sA15d

Using the identitycx8−c8x=−1, C is determined as

C = −
1

k
. sA16d

Since one has obtained the two equivalent forms of
Fl,ksr ,r8d, one can now prove that the identity Eq.s10d holds
for

ql,k
l srd = Bout

l fbl
lclskrd + xlskrdg. sA17d

Using the form

Fl,ksr,,r.d = −
1

k
clskr,dfbl

lclskr.d + xlskr.dg,

sA18d

one can show forr .a that

U ]Fl,ksr,,r.d
]r,

U
r,=a

;
]

]a
Fl,ksa,rd = − c8lskadfbl

lclskr.d

+ xlskr.dg. sA19d

The derivative ofql,k
l is

fql,k
l sadg8 ; U ]ql,k

l srd
]r

U
r=a

= Bout
l kfbl

lc8lskad + x8lskadg.

sA20d

Using the above equations, one can obtain the following
identity:

fql,k
l sadg8Fl,ksa,rd − ql,k

l sad
]

]a
Fl,ksa,rd

= Bout
l fbl

lclskrd + xlskrdg. sA21d

Similarly for r ,a

U ]Fl,ksr,,r.d
]r.

U
r.=a

;
]

]a
Fl,ksr,ad = − clskr,dfbl

lc8lskad

+ x8lskadg. sA22d

Straightforward calculation yields

fql
l,ksadg8Fl,ksa,rd − ql,k

l sad
]

]a
Fl,ksa,rd = 0. sA23d

One has consequently the identity Eq.s10d.

APPENDIX B: DERIVATION OF EQ. (16)

In Appendix A, we showed that

Fl,ksr,r8d ; o
s

fl,ssrdfl,ssr8d
k2 − ks

2 = −
1

k
clskr,dfbl

lclskr.d

+ xlskr.dg.

One can define similar functionsFl,k
A srd ,Fl,k

B1srd ,Fl,k
B2srd, and

Fl,k
C srd and prove similar identities. The proof is parallel with

the one forFl,ksr ,r8d. The definitions and the identities are
listed:

Fl,k
A srd ; o

s

fl,ssrdfl,ssrd
k2 − ks

2 sB1d
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;−
1

k
clskrdfbl

lclskrd + xlskrdg, sB2d

Fl,k
B1srd ; U ]

]r
Fksr,r + edU

e→0
sB3d

=− c8lskrdfbl
lclskrd + xlskrdg, sB4d

Fl,k
B2srd ; U ]

]r
Fksr,r − edU

e→0
sB5d

=− clskrdfbl
lc8lskrd + x8lskrdg, sB6d

Fl,k
C srd ;

]2

]r ] r8
Fksr,r8d sB7d

=o
s

f8l,ssrdf8l,ssrd
k2 − ks

2 sB8d

=− kc8lskrdfbl
lc8lskrd + x8lskrdg, sB9d

Fl,k
B sr,r8d ; U ]

]r8
Fksr,r8dU

r8=r

sB10d

=o
s

fssrdf8ssrd
k2 − ks

2 . sB11d

From simple calculations, the following identities are ob-
tained:

Fl,k
B1srd − Fl,k

B2srd = − 1, sB12d

Fl,k
B1srdFl,k

B2srd = Fl,k
A srdFl,k

C srd, sB13d

Fl,k
B srd − Fl,k

B1srd = Fl,k
B2srd − Fl,k

B srd =
1

2
. sB14d

From these results, we can obtain Eq.s16d as follows.
Using the identity for the Riccati-Bessel functionscx8
−c8x=−1, Eq.s6d is rewritten as

fxlskad + bl
lclskadg 3 fnmDlsnkadclsnkad − c8lsnkadg = − 1.

sB15d

This is turned into

nmkDlsnkadFl,k
A sad − Fl,k

B1sad = 1, sB16d

by usingFl,k
A andFl,k

B1. Multiplying Eq. sB16d by Fl,k
C sad and

using the identities Eqs.sB12d and sB13d, one has

Fl,k
B2fnkDlsnkadFl,k

B1 − Fl,k
C g = 0. sB17d

SinceFl,k
B2Þ0, use of Eq.sB12d gives

nmkDsnkadFl,k
B2sad − Fl,k

C sad = nmkDsnkad. sB18d

Eliminating Fl,k
B2 by using Eq.sB14d, one can obtain

nmkDlsadFl,k
B sad − Fl,k

C sad =
1

2
nmkDlsnkad. sB19d

From Eq.sB14d, Eq. sB16d is also expressed in another form
as

nmkDlsnkadFl,k
A sad − Fl,k

B sad =
1

2
. sB20d

Substrate Eq.sB20d multiplied by nmkDlsnkad from Eq.
sB19d, then

hnmkDlsnkadj2Fl,k
A sad − 2nmkDlsnkadFl,k

B sad + Fl,k
C sad = 0.

sB21d

Substitution of the eigenfunction representations ofFl,k
A ,Fl,k

B ,
andFl,k

C yields

o
s

fnmkDlsnkadfl,ssad − f8l,ssadg2

k2 − ks
2 = 0. sB22d

APPENDIX C: WRONSKI THEOREM [29]

Let r P f0,Rg. Consider the following two equations:

F d2

dr2 −
lsl + 1d

r2 + k2 + usrdk2Gwksrd = 0, sC1d

F d2

dr2 −
lsl + 1d

r2 + k82 + usrdk82Gwk8srd = 0, sC2d

where

usrd = usa − rdsn2 − 1d. sC3d

Impose thatwsr =0d=0 and that

E
0

R

uwsrdu2dr = 1. sC4d

Substrate Eq.sC2d multiplied bywk from Eq.sC1d multiplied
by wk8, then

d

dr
fwk8srdw8ksrd − w8k8srdwksrdg

+ sk2 − k82df1 + usrdgwksrdwk8srd = 0. sC5d

Integrating fromr =0 to a, one can obtain

wksadw8k8sad − w8ksadwk8sad = n2sk2 − k82dE
0

a

wksrdwk8srddr.

sC6d
Suppose thatk<k8, then one can approximate

E
0

a

wksrdwk8srddr < E
0

a

fwk8srdg2dr. sC7d

Whenwk8srd is quite localized in the regionr ,a, that is,

E
0

a

uwk8srdu2dr > E
0

R

uwk8srdu2dr = 1, sC8d
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Eq. sC6d is turned into

w8ksadwk8sad − wksadw8k8sad = − n2sk2 − k82d. sC9d

Dividing both sides bywksadwk8sad, one can obtain the final
form as

w8ksadwk8sad − wksadw8k8sad

wksadwk8sad
= − n2 k2 − k82

wksadwk8sad

< − n2k2 − k82

wk8
2 sad

. sC10d
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